Exploring the functional domain and the target of the tetanus toxin light chain in neurohypophysial terminals.

نویسندگان

  • G Dayanithi
  • B Stecher
  • B Höhne-Zell
  • S Yamasaki
  • T Binz
  • U Weller
  • H Niemann
  • M Gratzl
چکیده

The tetanus toxin light chain blocks calcium induced vasopressin release from neurohypophysial nerve terminals. Here we show that histidine residue 233 within the putative zinc binding motif of the tetanus toxin light chain is essential for the inhibition of exocytosis, in the rat. The zinc chelating agent dipicolinic acid as well as captopril, an inhibitor of zinc-dependent peptidases, counteract the effect of the neurotoxin. Synthetic peptides, the sequences of which correspond to motifs present in the cytoplasmic domain of the synaptic vesicle membrane protein synaptobrevin 1 and 2, prevent the effect of the tetanus toxin light chain. Our results indicate that zinc bound to the zinc binding motif constitutes the active site of the tetanus toxin light chain. Moreover they suggest that cleavage of synaptobrevin by the neurotoxin causes the inhibition of exocytotic release of vasopressin from secretory granules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The light chain of tetanus toxin inhibits calcium-dependent vasopressin release from permeabilized nerve endings.

The effects of tetanus toxin and its light and heavy chain subunits on vasopressin release were investigated in digitonin-permeabilized neurosecretory nerve terminals isolated from the neural lobe of the rat pituitary gland. Exocytosis was induced by challenging the permeabilized nerve endings with micromolar calcium concentrations. Tetanus toxin inhibited vasopressin release only in the presen...

متن کامل

High-level expression of tetanus toxin fragment C in Escherichia coli

Fragment C is the C-terminal domain of the heavy chain of tetanus toxin that can promote the immune response against the lethal dose of this toxin. Therefore, this portion can be considered as a candidate vaccine against tetanus infection, which occurs by Clostridium tetani. The present study aimed to compare the expression of tetanus toxin fragment C in Escherichia coli  BL21 (DE3) pLysS cells...

متن کامل

Functional characterization of the catalytic site of the tetanus toxin light chain using permeabilized adrenal chromaffin cells.

The molecular events underlying the inhibition of exocytosis by tetanus toxin were investigated in permeabilized adrenal chromaffin cells. We found that replacement of amino acid residues within the putative zinc binding domain of the tetanus toxin light chain such as of histidine (position 233) by cysteine or valine, or of glutamate (position 234) by glutamine completely abolished the effect o...

متن کامل

Design and Production of Recombinant TAT Protein Structure, Catalytic Domain of Diphtheria Toxin, and Evaluation of Its Effect on Cell Line

Background and Objectives: Cancer is one of the most deadly diseases in the present age and its conventional therapies have had low success. Toxin therapy of cancer is a new therapeutic approach, which has attracted the attention of pharmaceutical specialists. Diphtheria toxin consists of three functional, transducing, and binding domains, that the functional part inhibits protein synthesis and...

متن کامل

Cloning and expression of tetanus toxin C fragment (Fc) in prokaryotic vector for constructing recombinant protein based vaccine for tetanus

Tetanus is a disease caused by tetanus toxin, a potent inhibitor for the release of inhibitory neurotransmitter in the central nervous system that causes spastic paralysis. Fragment C (52 kD) of this toxin is responsible for binding to the neuronal membrane. For this reason, and also its non toxigenic and immunogenic nature, this fragment might be ideal for new vaccine development. Presently, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuroscience

دوره 58 2  شماره 

صفحات  -

تاریخ انتشار 1994